Appendix C: Additional Information to SANAE IV Energy Demand

C.1 Heating and Ventilation System Energy Audit

SANAE IV's Heating and Ventilation System (H&V System) is responsible for maintaining comfortable temperatures, humidity levels and good circulation of fresh air in the base. The system does not re-cycle any component of the heated inside air but instead uses only 100 % fresh outside-air. This is an expensive practice, since more heating energy is required, yet one often used in applications where health concerns are significant (such as in operating theatres at hospitals for instance). At SANAE IV the outside air is heated by air-handling units (AHUs), which transfer energy received from the FCU Water System to the fresh air blown in from the outside. Varying the speed of the AHU-fans that blow the outside air past the AHUs can therefore control the station's inside temperature. This is because the amount of energy passing from the FCU Water System into the air is regulated in this manner and the air can be heated to the exact temperature required to offset heat losses from the base.

Cencelli (2002) estimates that the amount of heat lost to the surroundings during summer and winter varies between 39 kW and 72 kW respectively, reaching up to 120 kW during very cold spells (also refer to paragraphs 4 and 5 of section 3.2.2). The processes of conduction through walls, radiative heat transfer and air leakage through poor seals or other openings ultimately cause this heat loss. Fortunately many appliances used in the base (such as computers, lights, kitchen appliances etc.) provide much of the required heat themselves, while the remainder is made up by heating outside air to the required temperature in the AHUs as explained above. With 100 % fresh-air ventilation requirements and the very low ambient temperatures in Antarctica this task of keeping the station warm is nonetheless extremely expensive.

A quick calculation will be performed to determine the energy required by the FCUs. Here Q is the heat load demanded by the H&V System [J] and ΔT is the necessary temperature difference [K] between the supply duct (at temperature T) and room conditions (at temperature T_{inside}).

$$Q = \dot{m} \cdot C_p \cdot \Delta T \tag{C.1}$$

And,

$$T = \Delta T + T_{inside}$$

Where T is the temperature of the H&V supply air. Therefore,

$$T = \frac{\dot{Q}}{\dot{m} \times C_p} + T_{inside}$$
C.3

The air leaving the FCU and moving into the supply ducts must be heated from ambient to T, thus the amount of energy required to do this is:

$$\dot{Q}_{FCU} = \dot{m} \times C_p \times (T - T_{ambient})$$
C.4

However, using equation C.2 for T,

$$\dot{Q}_{FCU} = \dot{m} \times C_p \left(\left(\frac{Q}{\dot{m} \times C_p} + T_{inside} \right) - T_{ambient} \right)$$

$$C.5$$

From equation C.5 and values for the variables provided by Cencelli (also given in table C.1) graphs have been created and plotted in figure C.1. It is clear that the most energy-intensive part of the current system is that portion of heating required to bring the cold outside air to room temperature (the y-intercept). Consider the plot of the required FCU thermal summer contribution with 15 % re-circulation (by mass) for instance. A 15 % re-circulation results in a 55 % FCU energy demand reduction.

The present investigation also revealed that a direct link with mass flow-rate and energy requirements exists (i.e. a 10 % reduction or increase in mass flow-rate results in a corresponding 10 % reduction or increase in FCU energy requirements).

Table C.1: A-Block summer and winter conditions suggested by Cencelli (2002)

PARAMETER	SUMMER	WINTER
Estimated heat loss from base due to conduction etc. (kW)	12.6	24.1
Mass flow-rate of air through FCUs (kg/s)	3.23	1.87
Specific heat capacity of air (J/kg.K)	1008	1008
Inside temperature (°C)	22	18
Ambient Temperature (°C)	-10	-55

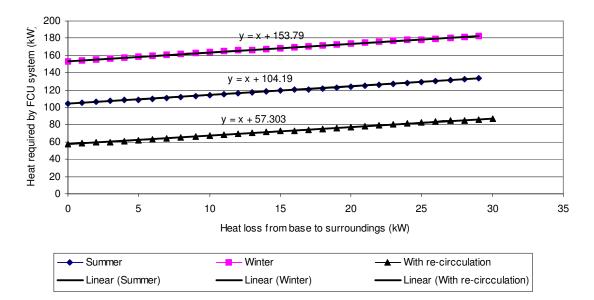


Figure C.1: Contribution required by A-Block FCU to compensate for heat losses from the base

Implementing re-circulation to reduce the FCU energy demand is not practical during the summer, however, even though it is well suited to winter conditions. During the summertime it is necessary to use the H&V System as a means of removing heat from the station (as described in section 3.2.2). A better energy-savings solution would be to control the mass flow-rate instead by running the current FCU-fans at a wider range of speeds in place of, as is currently the case (Cencelli, 2002), just two discreet settings. Furthermore, also note that the FCU-Water System does not presently operate at its set-point temperatures and requires adjustment.

From the discussion above and the information provided in section 3.2.2 it is evident that the H&V System is 180 degrees "out of phase" with the availability of solar energy. During the summer there is ample heat available from the generators to keep the base warm (in fact it is necessary to cool the base) while conversely the winter periods are characterised by cold inside temperatures. With the obvious lack of sunshine during the winter periods it is evident that the Heating and Ventilation System is not an ideal application for the utilisation of solar energy.

The above investigation was not meant as a comprehensive study, but rather as an introduction to the processes of the H&V System. This system is very complex and changes to it should only be considered while simultaneously accounting for the resultant effects on other systems in the station (like for instance the Primary Hot Water System). It is believed that updating the existing computer based simulation programme of SANAE IV (which is entirely separate from the

station's actual control systems and simply models a number of cause and effect relationships at the base) could be very useful in investigating and improving the current performance of SANAE IV.

An energy management and data capture system was once operational at the station, however, difficulties in maintaining the system's hardware have led to its decommissioning. The programme referred to in this instance however is unlike the energy management system and completely based in software. Utilisation of such a programme would mean, firstly, that the entire base operating system will become currently and technically documented. Secondly, this exercise would result in the identification of all the best opportunities for improvements at the base, with a resultant quantification of return on investment. Thirdly, the performance of the base could be monitored constantly and potential problems would therefore be identified soon. It is the opinion of the author that together with the opportunity of ensuring that the base does not lose any heat unnecessarily to the surroundings (through unsealed openings and cracks particularly at the hangar doors, seals around windows and any unplugged cable outlets) such a simulation programme poses a significant opportunity to generate savings.

As an aside, also note that the relative humidity of the base has for a long time been unsatisfactory (Cencelli, 2002). Due to the extremely cold temperatures water vapour in Antarctica tends to freeze and settle out as snow leaving the air dry and uncomfortable. Although humidifiers are installed in all three blocks of the station they exacerbate the problem of water shortages and for this reason are sometimes not used in the summer. However, they only consume a very low 500 W of electrical energy. If one could ensure a greater supply of water to the station then this system could be used more freely and would improve the living conditions at SANAE IV.

	A-BLOCK		
SITUATED	ITEM	QUANTITY	kW
Science Lab Top		QOANTIT	RYY
anna an an an an an an an Anna.	Computers	10	1.56
	Laptops	2	0.13
	Lights (9VV)	2	0.02
	Lights (24W)	14	0.34
	Dome Heaters	3	2.50
	Skirting Heaters (0.75 kW)	4	3.00
	UPS	9 amps at 220∨	1.56
	1919/2017		
Science Lab Bottom	Computers	10	1.56
	Laptops	4	0.22
	Lights (24VV)	32	0.77
	Skirting Heaters (1.5 kW)	1	1.50
	Skirting Heaters (0.75 kW)	6	4.50
	UPS	14 amps at 220V	2.18
	10.00	and the second	
Top Passage	Lights (9W)	11	0.10
	Lights (5VV)		0.10
Stairwells			ingenter of
	Lights (9W)	6	0.05
	Skirting Heaters (0.75 kW)	2	1.50
Top Bedrooms (17 in total)	Lights (9W)	36	0.32
rop Degrooms (17 in total)	Lights (24W)	72	1.73
	Computers	0	0.00
		6	0.00
	Laptops Skirting Heaters (0.75 kW)	18	13.50
Laundry			
	Lights (9VV)	0	0.00
	Lights (24W)	8	0.19
	Tumble Dryer (5kW)	2	10.00
	Skirting Heaters (0.75 kW)	1	0.75
	Washing Machine (240V, 5Amps)	2	1.66
Top Men's Bathroom			
rop mens Dannoon	Lights (9W)	14	0.13
Top Ladie's Bathroom			
	Lights (9VV)	9	0.08
		-	
Bottom Passage	Lights (9W)	10	0.09
Bottom Rooms		10	0.00
	Computers	13	2.02
	Laptops	6	0.39
	Fridge (230V, 0.87Amps)	1	0.14
	Lights (24W)	125	3.00
	Lights (9VV)	15	0.14
	Skirting Heaters (0.75 kW)	25	18.75
AB-Link			
	Lights (9W)	27	0.24
	Lights (24W)	12	0.29
	Computers	1	0.16
	Skirting Heaters (1.5 kW)	3	4.50
Heating and Ventilation	1		
rearing and ventriation	Fan motor	1	2.20
	Humidifier	1	0.50
	Exhaust fans	1	2.50
	Extraction fan	1	2.50
	Operating theatre	1	0.18
Totals	<u> </u>	201	
	Computers	34	5.29
	Laptops	18	1.17
	Lights (9W)	130	1.17
	Lights (24W)	263	6.31
	Skirting Heaters (1.5kW)	4	6.00
	Skirting Heaters (0.75kW) UPS	56 14 Amps at 220V	42.00
		14 Pumpo di 2209	2.10
Graph			
	Heaters Lights		50.50
	LIGHTS		7.48
			7.00
	Ventilation and humidification Washing machines and driers		7.88

Table C.2: A-Block electricity consumers

[¥] All data presented in appendix C.2 was collected by the author during the 2004/2005 SANAE IV takeover.

Table C.3: B-Block ele	ectricity consumers
Table C.3: B-Block ele	ectricity consumers

Table C.4: C-Block electricity consumers
--

	B-BLOCK		
SITUATED	ITEM	QUANTITY	kW
Top Passage	Lights (9W)	12	0.11
	Fridge (220V, 0.7 Amps) Freezer (220V, 0.7 Amps)	1	0.11
	Treezer (2204, 0.7 Amps)		0.11
Stairwells	Lights (9W)	4	0.04
	Skirting Heaters (0.75 kW)	2	1.50
Top T∨ Lounge	Linker (2010)	12	0.29
	Lights (24W) Skirting Heaters (0.75 kW)	2	1.50
Top Library			
	Lights (24W)	24	0.58
Top Stores			
	Lights (24W) Lights (9W)	8	0.19
	Skirting Heaters (0.75 kW)	2	1.50
Top Bedrooms (11 in total)	Lights (9W)	22	0.20
	Lights (24VV) Laptops	44	1.06
Laundry	Skirting Heaters (0.75 kW)	11	8.25
Loonary	Lights (24VV)	8	0.19
	Tumble Dryer Washing Machine (240V, 5Amps)	3	2.33
Top Men's Bathroom			
	Lights (9VV)	20	0.18
Top Ladie's Bathroom			
	Lights (9W)	9	0.08
Bottom Passage	Linhte 1900	7	0.00
	Lights (9W)	/	0.06
Bottom Stairwell Stores	Lights (9W)	6	0.05
Waste Room			
TYASLE RUDM	Lights (24W)	18	0.43
	Lights (9W) Skirting Heaters (0.75 kW)	2	0.02
Bottom TV Lounge	· · · · · · · · · · · · · · · · · · ·		
Dottom IV Lounge	Small Spotlights (50W, 2 Amps per 3 lights)	12	3.73
	Lights (24W) Skirting Heaters (0.75 kW)	12	0.29
		~	1.00
Bottom Bar	Small Spotlights (50W, 2 Amps per 3 lights)	19	
	Lights (9VV) Skirting Heaters (0.75 kW)	1	0.01
	Ice Maker		0.75
	Refrigerator		
Bottom Games Room	Small Spotlights (50W, 2 Amps per 3 lights)	2	
	Lights (24VV)	31	0.74
	Skirting Heaters (0.75 kW)	2	1.50
Dry Room Store	Lights (24W)	15	0.36
	Skirting Heaters (0.75 kW)	2	1.50
Freezer Room			
1002011000	Lights (9W)	18	0.16
	Refrigeration Equipment 10 HorseP Compressor	7.46kW	
	Condensation Fan Evaporation Fans	0.37kW	
	3/4 HP Compressor	5.56kW	
	Evaporation Fans Condensation Fan		
Kitchen	Total		11.546
Kitchen	Lights (24W)	10	0.24
	Convection Oven (6.5 kW per phase) Deep Frier (12kW)	1	19.50 12.00
	Snackwich Machine	1	3.00
	Heating Plates (3kW) Solid Top Oven (6kW /phase)	1	3.00 18.00
	Electric Mixer Defy Oven (16 Amps)	2	0.66
	,(2.43
Dining Room	Lights (9VV)	48	0.43
	Skirting Heaters (0.75kW) Ice Maker	6	4.50
	Microwave (1.3kW) Fridge (0.7 Amp)	1	1.30
	Fridge (0.7 Amp) Toaster (3.15 kW)	1	0.70
	Baine Marie Drinking Fountain	1	2.50
	Snackwich Machine (2.5kW)	1	2.50
BC-Link			
	Lights (9VV) Lights (24VV)	27 14	0.24
	Skirting Heaters (1.5 kW)	4	6.00
Heating and Ventilation			
- 22	Fan motor Humidifier	1	2.20
	Exhaust fans	2	5.00
	Fresh air supply (kitchen) Extraction fan	1	5.00 2.50
Totals			
i utalis	Lights (9W)	180	1.62
	Lights (24W) Small Spotlights (50W)	196 33	4.70
	Skirting Heaters (0.75kW)	36	27.00
	Panel Heaters (1.5kW) Freezer Room	4	6.00 11.546
	Kitchen Equipment	1	58.65
Graph			
	Heaters Lights		33.00 16.59
	Ventilation and Humidification		15.20
	Washing machines and driers Freezer Room Dining Room		17.33 11.546
			11.35

	C-BLOCK	1	
SITUATED	ITEM	QUANTITY	kW
Gym			
	Lights (24VV) Lights (9VV)	14	
	Skirting Heaters (0.75W)	4	
Usetsing Decement		-	
Upstairs Passage	Lights (9W)	22	
Upstairs Lab	Lights (24VV)	4	
	Lights (2411)		
Upstairs Offices	1.5.5.4. 274510	22	
	Lights (24VV) Lights (9VV)	22	
	Laptops	2	
	Computers Skirting Heaters (0.75W)	3	
	Skinning Heaters (0.75W)		
Upstairs Stores			
	Lights (24VV) Lights (65VV)	28	
	Lights (0377)		
Sauna			
	Lights (24VV) Lights (9VV)	2	
	Sauna (12kW)	1	12.00
			present to the bit
Hanger	Lights (24W)	32	
Plant Room	12.1. 22.044		
	Lights (24VV) Lights (58VV)	32	
	Lighte (eerry		
Welding Room	11-14-27-010	14	
5	Lights (24VV) Lights (58VV)	4	
Daytank Room	Linkte (2004)	2	
	Lights (20VV)	2	
Cat Store			
	Lights (24W)	12	
Sewage Plant			
11 1	Lights (20VV)	6	
Downstairs Passage			
Downstans r assage	Lights (9W)	3	
Heating and Ventilation	Fan motor	1	1.10
	Humidifier	1	0.50
-	Exhaust motor (W. purification) Hangar Extraction	1	2.30
	Exhaust fan (plantroom)	1	2.20
	Hangar Rejection Unit	1	4.00
Miscellaneous			
Miscellarieuus	Water purification plant	1	6.75
	Fire System	1	0.08
	Radio Room	1	3.30
Plant Room			
	Primary Hot Water pumps	2	4.00
	Domestic Hot Water pumps FCU Water pumps	2	1.10
	Cold Water pumps	2	4.00
Inline heaters	Cold water system	1	15.00
	Hot water system	1	15.00
	FCU system	1	90.00
Totals			
	Lights (9W)	31	0.28
	Lights (20W) Lights (24W)	8	0.16
	Lights (58W)	12	0.70
	Lights (65W)	4	0.26
	Skirting Heaters (0.75kW)	7	5.25
Graph			
	Heaters		5.25
	Lights Ventilation and humidification		5.24 11.20
	Sauna		12.00
	Plant room	-	16.60
	Inline heaters Snow Smelter	4	120.00 94.00

C.3 Graphical Representation of C2 (Electricity Consumption)^{*}

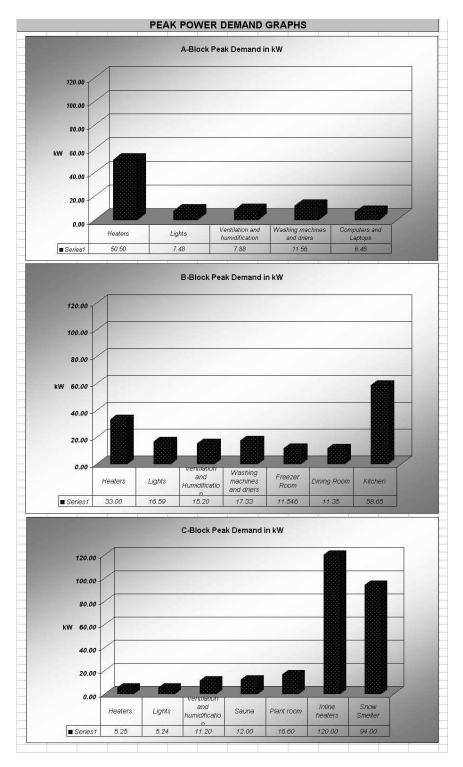
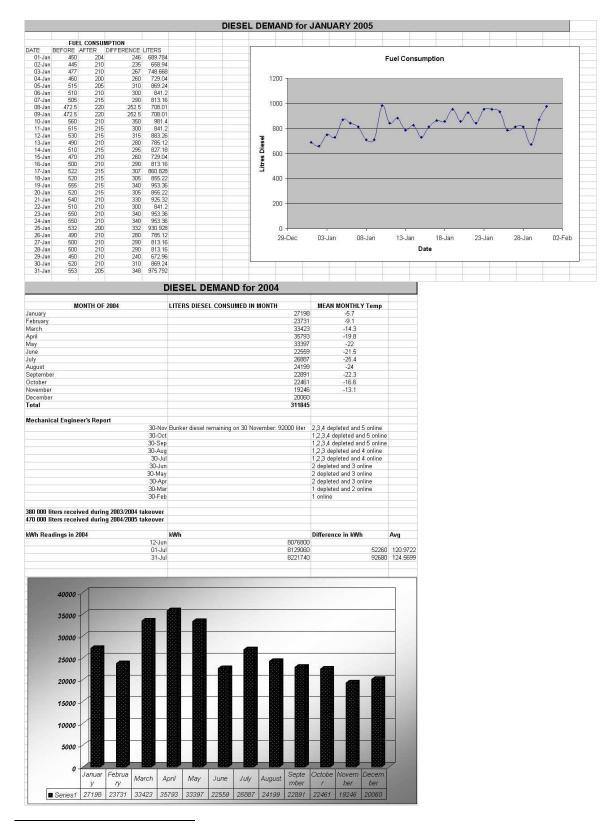


Figure C.2: Graphs of electricity consumers in each block


[¥] All data presented in appendix C.3 was collected by the author during the 2004/2005 SANAE IV takeover.

C.4 Assimilated Data on Generator Output (used for determining load profiles)

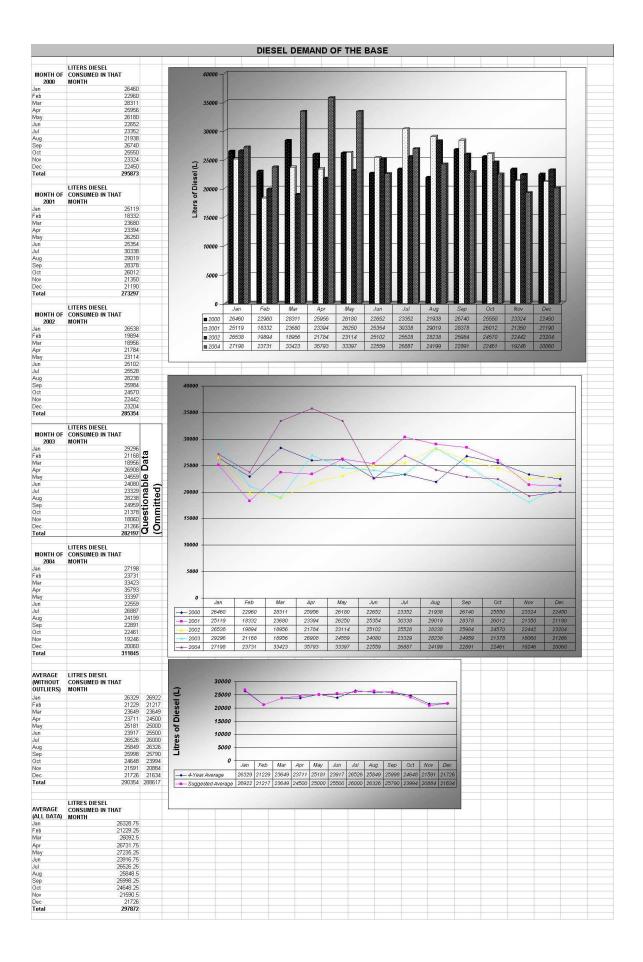

	Pre		ISTORICAL ofile measurer							<u> </u>	Even	yone's Ave	rade
Time		Cenc			Taylor		Teetz		Olivier		MIN	TIME	AVG
0.00	165.00	131.00	131.00				165.00	123.30	105.00		105.00		
0.02	100.00	101.00	101100					112.00	90.00		90.00	0.00	100.12
0.04	175.00	125.00	118.00	170.00			150.00	138.00	80.00		80.00	0.04	136.57
0.06		1000000	(substantian	0.00.000			School and	140.00	84.30		84.30		
0.08	176.00	120.00	118.00	180.00			135.00	142.50	87.00		87.00	0.08	136.93
0.10		1001004						138.00	84.30		84.30		
0.13	162.00	118.00	118.00	113.00			125.00	128.00	83.00		83.00	0.13	121.00
0.15									85.00		85.00		
0.17	137.00	118.00	118.00	124.00			122.00		77.80		77.80	0.17	116.13
0.19									78.80		78.80		
0.21	113.00	125.00	125.00	131.00			122.00		82.00		82.00	0.21	116.33
0.23									98.50		98.50		
0.25	110.00	113.00	113.00	130.00			122.00		90.00		90.00	0.25	113.00
0.27									92.00		92.00		
0.29	110.00	106.00	106.00	131.00	130.00	130.00	122.00		87.00		87.00	0.29	115.25
0.31			000000000	123123041231		a			89.00		89.00		
0.33	110.00	106.00	106.00	131.00	112.00	112.00	130.00		100.00	132.00	100.00	0.33	115.44
0.35									100.00	125.00	100.00		
0.38	110.00	113.00	113.00	134.00	160.00	155.00	142.00	103.00	71.50	130.00	71.50	0.38	123.15
0.40								146.50	148.00	101.00	101.00		
0.42	112.50	120.00	120.00	126.00	168.00	175.00	158.00	150.00	160.30	104.00	104.00	0.42	139.38
0.44								142.00	160.00	142.50	142.00		
0.46	113.00	125.00	125.00	119.00	159.00	162.00	162.00	118.00	178.00	142.50	113.00	0.46	140.35
0.48						0.0000.0000		172.00	175.00	160.00	160.00		
0.50	130.00	125.00	125.00	156.00	150.00	110.00	161.00	118.00	150.00	133.50	110.00	0.50	135.85
0.52								142.50	139.00	166.00	139.00		
0.54	177.00	118.00	118.00	194.00	145.00	162.00	165.00	137.00	115.00	143.33	115.00	0.54	147.43
0.56								133.80	112.00	142.00	112.00		
0.58	174.00	113.00	113.00	194.00	140.00	165.00	150.00	148.00	96.80	151.00	96.80	0.58	144.48
0.60								142.00	96.80	157.67	96.80		
0.63	170.00	112.00	112.00	156.00	158.00	150.00	140.00	154.00	138.00	167.00	112.00	0.63	145.70
0.65						0.000000000		126.50	150.00	156.40	126.50		
0.67	175.00	106.00	106.00	135.00	135.00	148.00	140.00	112.00	170.00	156.50	106.00	0.67	138.35
0.69								106.00	163.30		106.00		
0.71	180.00	104.00	104.00	152.00	150.00	140.00	150.00	132.80	120.00	137.50	104.00	0.71	137.03
0.73						100.00		135.50	87.50		87.50		
0.75	187.00	108.00	108.00	156.00	152.00	155.00	155.00	135.30	101.00		101.00	0.75	139.70
0.77	101.00	100.00	100.00	150.00		155.00	150.00	142.00	142.50	145.50	142.00	0.70	
0.79	194.00	120.00	120.00	152.00	148.00	155.00	158.00	145.00	150.00	138.00	120.00	0.79	148.00
0.81	107.00	4.45 00	115.00	452.00	100.00	444.00	450.00	149.00	130.00	156.50	130.00	0.00	110.00
0.83	187.00	145.00	145.00	152.00	132.00	144.00	158.00	145.00	136.50	450.00	132.00	0.83	149.39
0.85	101.00	453.00	152:00				105.00	137.00	130.00	150.00	130.00	0.00	454.00
0.88	194.00	152.00	152.00				165.00	145.00	121.00		121.00	0.88	154.83
0.90	107.00	123.00	122.00				105.00	136.00	116.00		116.00	0.00	147 40
0.92	187.00	132.00	132.00				165.00	151.00 155.50	117.50	121.00	117.50	0.92	147.42
	170.00	112.00	112.00				158.00					0.00	100.07
0.96	170.00	112.00	112.00				150.00	138.00	121.00	145.00	112.00	0.96	136.57
	154.94	119.46	119.08	146.80	145.64	147.36	146.67	141.00	113.00	147.00	113.00	0.48	134.79
AVG MAX													
	194.00	152.00	152.00	194.00	168.00	175.00	165.00	172.00	178.00	167.00	160.00	0.96	
MIN	110.00	104.00	104.00	113.00	112.00	110.00	122.00	103.00	71.50	101.00	71.50	0.00	113.0

Table C.5: Data collected on generator load profiles

C.5 Generator Diesel Consumption at SANAE IV^{*}

[¥] All data presented in appendix C.5 was collected by the author during the 2004/2005 SANAE IV takeover.

C.6 Associated Amounts of Generator Diesel Consumption and Electrical Output[¥]

Table C.6: Generator diesel consumption and electrical power generation

	10) 	Jan-0	5		
DATE	TIME	kWh reading		Average kW	
06-Jan		43064.90			
16-Jan	23h48	43207.16	28452	118.55	
17-Jan	23h30	43220.85	2738	115.28	
18-Jan	21h45 22h00	43235.20 43251.37	2870	128.99	
19-Jan 21-Jan	22h00 22h00	43251.37	6044.00	133.36 125.92	
21-Jan 22-Jan	22h00	43297.20	3122	130.08	
23-Jan	17h09	43309.80	2520	134.04	
24-Jan	17h15	43325.75	3190	132.92	Ë
25-Jan	19h00	43341.00	3050	118.45	Coincides with diesel consumption
26-Jan				119.58	du
27-Jan				119.58	sull
28-Jan	19h00	43384.05	8610.00	119.58	100
29-Jan	17h15	43395.25	2240.00	100.67	-
30-Jan	401.20	10105.55	0000.00	128.25	.8
31-Jan	18h30	43425.55	6060.00	128.25	4 4
01-Feb 02-Feb					wit
03-Feb					8
04-Feb					cid
05-Feb					oin
06-Feb					Ő
DATE	1.54.24	June to Aug			
DATE 12 lun	kWh reading	kwh used	Liters diesel used	Average kW	
12-Jun 17-Jun	40384.00 40449.35	13070.00	3650.90	108.92	
17-Jun 18-Jun	40449.35	2590.00	687.00	108.92	
19-Jun	40462.30	2590.00	707.00	107.92	
20-Jun	40475.10	2320.00	656.00	96.67	
24-Jun	40542.20	11100.00	3177.00	115.63	
25-Jun	40556.80	2920.00	861.00	121.67	
26-Jun	40571.50	2940.00	827.00	122.50	
27-Jun	40584.50	2600.00	757.00	108.33	
28-Jun	40599.20	2940.00	805.00	122.50	
29-Jun	40613.40	2840.00	813.00	118.33	
30-Jun	40627.80	2880.00	810.00	120.00	
01-Jul	40645.30	3500.00	967.00	145.83	
02-Jul	40664.50	3840.00	1138.00	160.00	
03-Jul	40680.55 40695.75	3210.00	920.00	133.75	
04-Jul 05-Jul	40695.75	3040.00	827.00	126.67 123.33	
05-Jul 06-Jul	40710.55	3000.00	850.00	125.55	
12-Jul	40725.55	18790.00	5201.00	130.49	
12-Jul	40834.60	3020.00	869.00	125.83	
14-Jul	40848.75	2830.00	757.00	117.92	
15-Jul	40863.60	2970.00	791.00	123.75	
16-Jul	40876.80	2640.00	782.00	110.00	
17-Jul	40892.10	3060.00	875.00	127.50	
18-Jul	40907.30	3040.00	841.00	126.67	
20-Jul	40937.35	6010.00	1649.00	125.21	
21-Jul	40950.40	2610.00	732.00	108.75	
23-Jul	40983.60	6640.00	1825.00	138.33	
24-Jul 25-Jul	41002.40 41018.20	3760.00	1175.00 875.00	156.67	
25-Jul 26-Jul	41018.20	3160.00 2840.00	794.00	131.67 118.33	
20-Jul	41032.40	2860.00	765.00	119.17	
28-Jul	41040.70	2900.00	819.00	120.83	
29-Jul	41077.10	3180.00	878.00	132.50	
30-Jul	41093.70	3320.00	892.00	138.33	
31-Jul	41108.70	3000.00	838.00	125.00	
02-Aug	41136.20	5500.00	1559.00	114.58	
03-Aug	41150.85	2930.00	813.00	122.08	
04-Aug	41166.10	3050.00	841.00	127.08	
05-Aug	41180.10	2800.00	780.00	116.67	
06-Aug 07-Aug	41193.60 41208.10	2700.00	757.00	112.50	
07-Aug 08-Aug	41208.10	2900.00	794.00	120.83 161.67	
09-Aug	41227.50	2300.00	1090.80	95.83	
10-Aug	41254.10	3020.00	679.00	125.83	
12-Aug	41283.70	5920.00	1601.00	123.33	
13-Aug	41297.65	2790.00	847.00	116.25	
14-Aug	41312.00	2870.00	802.00	119.58	
16-Aug	41339.80	5560.00	1581.00	115.83	
17-Aug	41352.20	2480.00	701.00	103.33	
18-Aug	41363.75	2310.00	673.00	96.25	
19-Aug	41376.80	2610.00	743.00	108.75	
20-Aug	41390.00	2640.00	743.00	110.00	
21-Aug 25 Aug	41402.90	2580.00	701.00	107.50	
25-Aug	41455.30	10480.00 214260.00	2974.00 60136.70	109.17 120.64	
		2 14200.00	00130.70	120.04	
		Generator Ef	ficiency		
Diesel Pro	operties				
		kWh/liter	9.8		
Generato	r Properties		2000		
Generato	r Efficiency	kWh/liter	3.56		
Generato	r cinciency	%	36.36		

[¥] All data presented in appendix C.6 was collected by the author during the 2004/2005 SANAE IV takeover.

C.7 Graphical Representation of C6

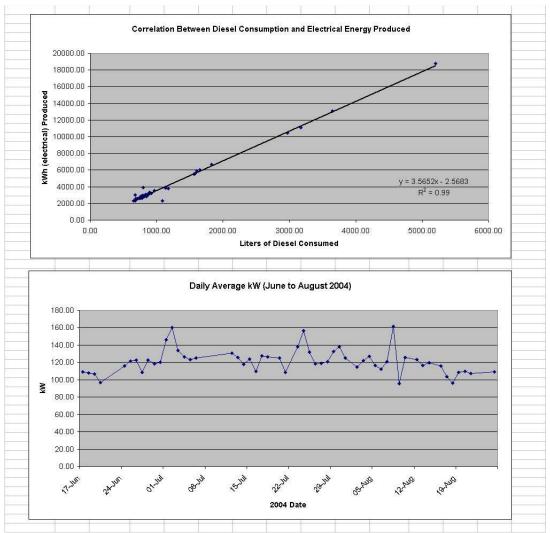


Figure C.3: Graphs of generator diesel consumption and electrical generation

Appendix D: Additional Information to Solar Energy Capturing Solutions

D.1 Energy Capturing Devices

Applications for flat-plate solar thermal collectors were investigated in chapter 3, where it was shown that the energy load of the H&V System at SANAE IV did not match available solar radiation well throughout the year. During the periods of high insolation there was no need to heat the base and in fact the station needed to be cooled, while during winter there was a significant shortage of available solar radiation. It was pointed out, however, that the snow smelter might be a potential point of application. And so, under these assumptions, one would attempt to supplement the current fresh water demand of the station with solar energy captured from a flat-plate solar collector.

Huang et al. (2001) have provided a survey of the three basic commercially available flat-plate solar collectors (viz. Type-A, Type-B and Type-C) as well as their respective average market costs. Type-A is described as a low-cost specially designed single-glazed flat-plate solar collector with selective surface and a 10-centimetre air layer of insulation beneath the glass cover. Type-B is a conventional single-glazed solar collector with selective surface and Type-C is a vacuum-tube collector. A graph of the performance of these collectors is provided below in figure D.1.

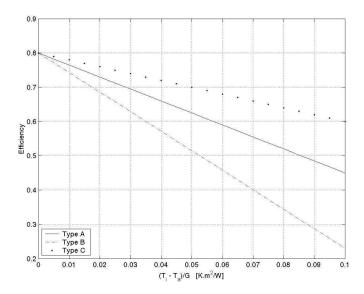


Figure D.1: Characteristics of the standard types of solar collectors (Huang et al., 2001)

The efficiencies of these collectors can therefore be calculated from figure D.1 if the ambient temperature, inlet collector temperature and insolation rate can be estimated. Thus, since the average radiation profile for each month has already been determined, and the average ambient conditions are known, it is only necessary to determine the average collector inlet temperature.

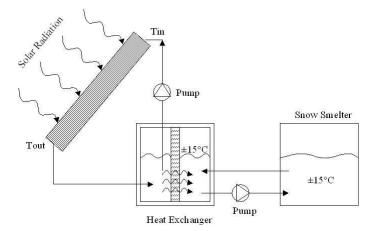


Figure D.2: Potential solar thermal collector set-up

From figure D.2 it is evident that temperature at the collector inlet can be estimated from a simple steady state heat transfer analysis at the heat exchanger, since the snow smelter temperature is fixed and known. Using the equation:

$$Q_{solar} = U_o \cdot A_o \cdot \Delta T \qquad D.1$$

Where Q_{solar} is the heat collected by the flat-plate solar thermal collector [W], U_o is the overall outside heat transfer coefficient of the flat-plate heat exchanger [W/m²K], A_o is the outside area of the flat plate across which heat is exchanged [m²] and ΔT is the temperature difference across the plate [K]. If we estimate: Q_{solar} as 4752 W (8 panels, each 1.98 m², subject to radiation of 500 W/m² and a collector efficiency of 50 % which was iterated to convergence), U_o as 1000 W/m²K (Mills, 1999) and the area A_o of the heat exchanger as 1 m², the result from equation D.1 is a ΔT of approximately 5 K. Thus (refer to figure D.2) the inlet temperature to the collector would be approximately 20°C, or 27°C above the average ambient January temperature. In this manner, using: the performance curves suggested by Huang et al. (2001) shown in figure D.1, the average daily radiation profiles for January described in chapter 1 and the estimated heat exchanger values given above, the average collector efficiencies have been estimated and are presented in table D.1.

CRITERIA	TYPE-A	TYPE-B	TYPE-C
Calculated daily January efficiency	0.56	0.45	0.65
Calculated daily December efficiency	0.55	0.44	0.65
$Cost (US\$/m^2)*$	136	121	485
Calculated average January tilted yield (kWh/m ² .day)	4.53	3.63	5.24
Calculated average December tilted yield (kWh/m ² .day)	4.57	3.62	5.36

Table D.1: Summary of solar thermal collector systems

*These estimates provided by Huang et al. (2001) are low

D.2 Basic Snow Smelter PLC Logic

The following is an extract taken out of the Engineer's training manual (SANAE IV database, 2005) used to explain proper operation and functioning of the snow smelter.

"4.4.2 The basic logic used in the PLC is as follows:

- The PLC will only switch on elements up to the maximum amount of elements selected by the rotary switches. The reason for this is that you do not want the power consumption to rise to such an extent that a second generator must start unattended.
- Once the temperature of the water in each side reaches 30 Degrees Celsius, the PLC will switch off elements to keep the water temperature at 30 Degrees Celsius. This action will happen at 30 minute intervals. (Refer to PLC Manual).
- If the temperature drops quickly to below 20 Degrees Celsius as is the case when snow is dumped into the smelly, elements will be switched on at 2 minute intervals. (Refer to PCC Manual).
- The level switches are situated in the hot tank. The switches are float level switches which are connected to the indicator lights on the front panel.
- When the 100 % level light comes on, the PLC will automatically activate valves 9 and 10 and water will be pumped to the base for a period of 10 minutes. This is just a safety measure to ensure that the tank does not overflow. It would be technically possible to automate the complete pumping action. The reason why it was not done is that at the stage where the level reaches 100 %, the temperature might be 30 Degrees Celsius. The volume of hot water left after 10 minutes of pumping can then be used to melt more snow before it is pumped to the base.
- When snow is then added to the cold side of the melter, it must be attempted to stabilise the temperature well above 8 Degrees Celsius after which the pumping action can be started by pressing the pump button for 2 seconds. To stop the pumping action the button must be kept in for 6 seconds."

D.3 Thermomax Product Prices and Specifications

THERMO TECHNOLOGIES

"Worldwide Leadership in Solar Heating Systems & Services"

Retail Price List 2005

System	Description	Price
MAZ 2-20S	IAZ.2-20S20 Tube Thermomax Collector System (with sloping roof fittings and accessories)60" x 80", 135 lbs.	
MAZ 2-30S	2-30S 30 Tube Thermomax Collector System (with sloping roof fittings and accessories) 90" x 80", 195 lbs.	
MAZ 2-40S	40 Tube Thermomax Collector System (with sloping roof fittings and accessories) 120" x 80", 270 lbs.	\$ 3,900.00
MAZ 2-508	50 Tube Thermomax Collector System (with sloping roof fittings and accessories) 150" x 80", 330 lbs.	\$ 4,900.00
MAZ 2-60S	60 Tube Thermomax Collector System (with sloping roof fittings and accessories) 180" x 80", 390 lbs.	\$ 5,850.00
Part No.		aug
MAZ 2-20M	20 Tube Manifold Set	\$ 450.00
MAZ 2-30M	30 Tube Manifold Set	\$ 650.00
TMA 600	Thermomax Memotron Tube (Box of 10)	\$ 750.00
81VR80TC	80 Gallon Rheem Solar Direct Tank without Heat Exchanger	\$ 750.00
81V80HE	80 Gallon Rheem Solar Indirect Tank with Heat Exchanger	\$ 950.00
81VR120TC	120 Gallon Rheem Solar Direct Tank without Heat Exchanger	\$ 950.00
SBB 300 +	80 Gallon Steibel Eltron Solar Tank with two Heat Exchangers	\$ 999.00
SBB 400 +	105 Gallon Steibel Eltron Solar Tank with two Heat Exchangers	\$ 1,150.00
PCU 20/60	Pump Unit Control for up to 60 Tubes	\$ 750.00
USDT 2004	Digital Universal Solar Control Unit (Two Sensors, 3rd optional senor)	\$ 149.00
USDT 2005	Analog Universal Solar Control Unit (Two Sensors)	\$ 129.00
USDT 3000	Solar Control Unit (Two Tanks, Three Sensors)	\$ 239.00
SMT 100T	Solar Control Unit (Two Tanks, Three Sensors)	\$ 287.00
SMT 400T	Solar Control Unit (Three Tanks, Three Sensors)	\$ 512.00
C0076	Roof Bracket Kit for Flat Roofs	\$ 170.00
C0022	Mexican Tile Roof Elevation Kit (set of four) n are FOB Baltimore, Maryland. Crating: Add \$ 150.00 per system for packaging and handling in a wooden	\$ 75.0

Figure D.3: Thermomax product price sheet (Thermomax, 2005)

D.4 Solahart Product Specifications for the M-Collector

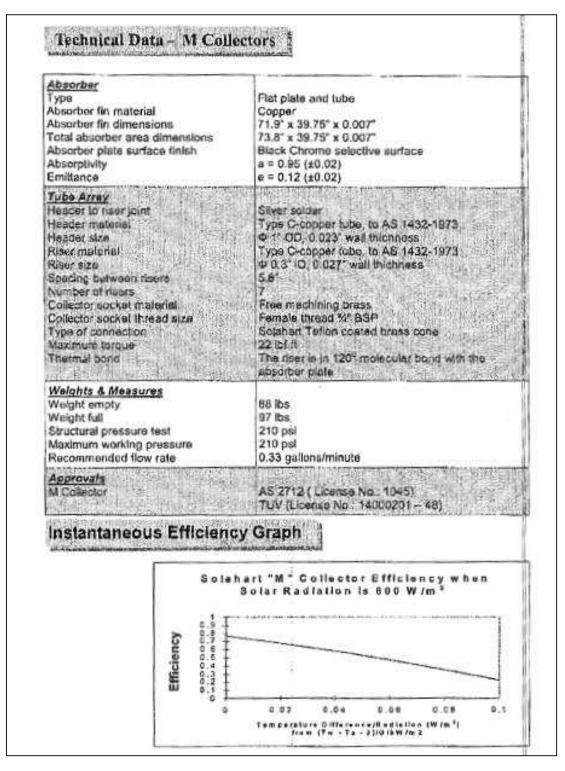


Figure D.4: Solahart M-Collector specifications (Solahart, 2005)

D.5 Solahart Product Specifications for the Bt-Collector

Technical Data – Bt C	ollectors
Absorber Type Absorber fin material Absorber fin dimensions Absorber plate surface finish Absorptivity Emittance	Flat plate and tube Copper 1,895 mm x 985 mm x 0.20 mm Sputtered surface (Titanium Oxide) $\alpha = 0.95 (\pm 0.02)$ $\epsilon = 0.05 (\pm 0.02)$
Tube Array Header to riser joint Header material Header size Riser material Riser material Riser size Spacing between risers Number of risers Collector socket material Collector socket material Sollector socket material Sollector socket thread size Fype of connection Maximum torque Thermal bond	Silver solder Type C-copper tube, to AS 1432-1973 @ 25.4 OD, 0.71 mm wall thickness Type C-copper tube, to AS 1432-1973 @ 9.55 mm OD, 0.71 mm wall thickness 74 mm 13 Free machining brass Female thread %" BSP Solahar Tetion coated brass core 0.03 kN-m Optimised solder jointing for high performance
Weights & Measures Weight empty Weight full Structural pressure test Maximum working pressure Recommended flow rate	31 kg 33 kg 1,450 kPa 1.450 kPa 1.25 litres/minute
Approvals Australia Europe	AS 2712 Solar Keymark
nstantaneous Efficien	

Figure D.5: Solahart Bt-Collector specifications (Solahart, 2005)

D.6 MATLAB V6.1 Snow Smelter Simulation Programme

	%% MELTER SIMULATION PROGRAMME SANAE IV -2005 %%
	%%
	nodels the energy transfer characteristics of the snowsmelter at South Africa's
	n in Antarctica. It is used to estimate the reduction in electrical consumption
%of the heating eler	nents when solar thermal collectors are incorperated with the current system.
0/_ 0/_	
	te important initial conditions %%
close all	
clear all	
clc $T_{2}(1) = 0$	The temperature of eaching in the envelope startish the besting allowed and an eaching of the
	6 The temperature of water in the smelter at which the heating elements are switched off 7 The starting temperature of the solar energy store
14(2) 00,	
while (Ta(1)-Ta(end	())<0
Ta(1)=Ta(1)+3;	- Tamping (numPatr/Ta(1)))
disp([The starting	g Temp is: ',num2str(Ta(1))])
for Tmax=20	
%The solar collector	r is currently set as product 1 (see calculation of collector efficiency) with 72 collector panels
NoSolarr=0;	%Wheather or not the solar contribution must be accounted for in the simulation (1=No contribution)
month=2; mm=(0.080*80)*99	%The desired month of the year 8/3; %The amount of snow added in one filling of the snowsmleter from: [(L/person.day)*(No. of people at
base)*(kg/L)/(No. or	
NoOfPanels=8*3*3	
response2=10;	%The number of minutes delay between switching heating elements OFF
response1=2;	%The number of minutes delay between switching heating elements ON
HEMAX=12; V=6/24*NoOfPanel	%The maximum number of heating elements in the snowsmelter that can be turned on s; %The volume of the energy solar thermal store (in m^3)
clearsky=0;	% If the insolation rate is to based on maximum clear-sky conditions (1=YES)
enemising o,	
%% Establish the in	
p=1;	%% %THE MAIN COUNTER
PanelSize=1.98;	
tend=24*3600;	%The length of time of a simulation (in seconds)
gamma=180;	%The horizontal orientation of the collector (where 180=SOUTH)
mdot=0.0208;	% The flowrate through the collector (kg/s)
Cp=4181; Cl=335000;	%The specific heat of water (in J/kg.K) %The latent heat of snow (in J/kg)
U=1500;	%Overall heat transfer coefficient of the heat exchanger dividing the solar thermal store and the snowsmelter
	1.7; %Surface area of heat exchanger mentioned in U above
HESIZE=7500;	%The electrical capacity of a single heating element (in W)
massfraction=1/5;	%The fraction of snow added in one filling that remains in the smelter after pumping water to the base
Uu=20; Aaa=72;	%The overall heat transfer coefficient between the smelter and the surroundings (in J/m^2.K) %The total area of the snowsmelter exposed to heat loss
Tfill1=8.5;	% The total area of the showsheld exposed to hear loss % The time of day at which the first pumping session and snowsmelter filling takes place
Tfill2=13.5;	%The time of day at which the second pumping session and snowsmelter filling takes place
Tfill3=17.5;	% The time of day at which the third pumping session and snowsmelter filling takes place
Tfill4=32.5;	%The time of day at which the third pumping session and snowsmelter filling takes place
Tfill5=37.5; Tfill6=41.5;	%The time of day at which the third pumping session and snowsmelter filling takes place %The time of day at which the third pumping session and snowsmelter filling takes place
Tb(1)=Tmax;	%The starting energy of the snowsmelter
HE(1)=0;	%The number of heating elements on at the start of the day
changer=0;	% A tool used in conjunction with the RESPONSEL & 2 variables
wait=0; PumpSessions=0;	%A tool used in conjunction with the RESPONSE1 & 2 variables %To keep track of how many times water is pumped up the base during the day
PumpSessionsT(1)=	
NoFlow=0;	% If it is necessary to turn the solar thermal collectors off for a short time
Tamb=[-6.60 -10.30) -14.90 -18.20 -19.50 -20.10 -23.10 -22.90 -22.90 -18.20 -12.80 -7.10];
	5 11 17 16 15 15 14 10]; %Average meteorological days of every month
Beta=[22 63 74 84 8	36 86 86 88 78 69 52 48]; %Which are the optimum tilt angles of every month
%Some initial calcu	lations
A=PanelSize*NoOf	
dt=min([response1,r	
mass=mm+mm*mas	ssfraction; %Total mass in the smelter at any one time

 $\% {\rm Total}\xspace$ mass in the smelter at any one time

%Starting amount of energy in the smelter at beginning of day %Surface area from which solar energy store can lose heat

122

mass=mm+mm*massfraction;

Aaaa=((V^(1/3))^2)*6;

Qtot(1)=mass*Cl+mass*Cp*Tmax;

NoSolar=NoSolarr; %Start the clock t=0; while t < tend if t>24*3600 tt=(t/(24*3600)-floor(t/(24*3600)))*24*3600;else tt=t; end %Start the iterations hourr=floor(tt/3600); minn=floor((tt/3600-floor(t/3600))*60); secc=floor((tt/3600-hourr-minn/60)*3600); q=datenum([2005,month,day(month),hourr,minn,secc]); %%_____%% %% Incident solar radiation %% %%-----%% if clearsky==1 [G,Gcb,Gd]=F_ClearSkyInsolation(q); %Where G is the global horizontal insolation rate, Gd the diffuse insolation, Gcb the beam radiation and q the datenum elseif clearsky==0 [G,Gd,ttt]=F_MonthlyProfiles(month,tt/3600); %The time input is a number from 0 to 24 end %And the insolation rate is calculated on a tilted place from the horizontal measurement [Gt,Gdt,Gbt]=F_TiltISOSKY(q,Beta(month),G,Gd,0.7,gamma); %Assumes isotropic-sky conditions %% Calculate the collector efficiency %% %%-----%% %This needs to be done with iteration since the specifications are in terms of Tm and not Ti to the collector if Gt>0 %See F_SolarThermalEfficiency for a description of each product $[effm1, effm2, effm3] = F_SolarThermalEfficiency(Gt, Ta(p), month, NoOfPanels, PanelSize);$ eff=effm1; else eff=0 end sunshine(p)=Gt*eff; %The useful energy collected in the solar thermal collector 0/00/0--______%_% %%%%% Couple the collector characteristics with the snow smelter electrical heaters %%%%%% ----------%% %%-----*%*%-----*%*% %% Heating Elements Switched on or off %% %%-----%% if Tb(p)<Tmax & wait==0; HE(p+1) = HE(p)+1;wait=1; changer=t+response1*60; elseif Tb(p)>Tmax & wait==0; HE(p+1) = HE(p)-1;wait=1; changer=t+response2*60; else HE(p+1) = HE(p);end %Check to ensure that no more than 12 or less than 0 elements are on if HE(p+1)>HEMAX HE(p+1)=HEMAX; elseif HE(p+1)<0 HE(p+1)=0; end %%~~~~~%% %% Timer to enable the switching of elements %% %%-----%% if t>=changer wait=0: changer=tend+60; end

```
%%-----%%
\%\% The heat transfer into the tanks is calculated \%\%
Qin=HE(p+1)*HESIZE*dt; %No. of heating elements x Power per element (in W) x time interval [J]
QinSolar=U*Aa*(Ta(p)-Tb(p))*dt; %The heat exchanged from the solar thermal store to the snowsmelter
if (Ta(p)-Tb(p))<5
     NoSolar=1;
end
if NoSolar==1
     QinSolar=0;
end
NoSolar=0;
contribution(p)=QinSolar;
Qout=-Uu*Aaa*(Tb(p)-0)*dt; %Heat loss to the surroundings
Qtot(p+1)=Qtot(p)+Qin+Qout+QinSolar;
 %Making provision for the latency of snow when calculating the new smelter temperature
if Qtot(p+1)>mass*Cl
      Tb(p+1)=Tb(p)+(QinSolar + Qin + Qout)/(mass*Cp);
elseif Qtot(p+1)<mass*Cl
     Tb(p+1)=0;
end
%%-----%%
%% The water is pumped up to the base %%
%%-----
                     -----%%
 (t>(Tfill1*3600-dt) \& t<(Tfill1*3600+dt)) \ | \ (t>(Tfill2*3600-dt) \& t<(Tfill2*3600+dt)) \ | \ (t>(Tfill3*3600-dt) \& t<(Tfill3*3600+dt)) \ | \ (t>(Tfill3*3600+dt)) \ | \ (t>(Tfill
(t>(Tfill4*3600-dt) & t<(Tfill4*3600+dt)) | (t>(Tfill5*3600-dt) & t<(Tfill5*3600-dt)) | (t>(Tfill6*3600-dt)) | (t>
      if Tb(p+1)>8 %Can only pump water up to the base under these conditions
           PumpSessions=PumpSessions+1;
           PumpSessionsT(PumpSessions)=Tb(p+1);
           Qtot(p+1)=(mm*Cl+mm*Cp*Tb(p+1))*massfraction; %Remaining energy in the "store" of the snowsmelter
          if Qtot(p+1)>mass*Cl %If the added snow is immediately melted
                Tb(p+1)=(Qtot(p+1))/(mass*Cp);
           elseif Qtot(p+1)<mass*Cl %If the added snow still requires heating
                Tb(p+1)=0;
          end
           wait=0;
          changer=tend+60;
     end
end
                                                                                                                                                                             -%%
 %%-----
%% The end of the snow smelter code
                                                                                                                                                                              %%
%%------%%
%%%_____%%%
%% Calculate collected energy in store %%
%%-----%%
Qsolar=Gt*A*eff*dt; %The solar energy collected in the collector
Qloss=Uu*Aaaa*(Ta(p)-0); %Heat lost from the solar thermal store to the surroundings
if (Qsolar-mdot*Cp*Ta(p)*dt)<5
     NoFlow=1;
end
if NoFlow==0
      Qoutt=mdot*Cp*Ta(p)*dt; %The amount of energy leaving the solar store and entering the collector
 elseif NoFlow==1
      Ooutt=0:
      Qsolar=0;
end
NoFlow=0;
collected(p)=Qsolar;
Qdiff=(Qsolar+Qoutt)-Qoutt-QinSolar-Qloss;
                                                                                                                           %The energy effecting a change of temperature in the store
Ta(p+1)=Ta(p)+Qdiff/(V*998*Cp);
                                                                                                                           %The new temperature of the energy store
                                     %0 to 24*3600
t = t + dt;
p=p+1;
NoSolar=NoSolarr;
end
end
end
```

```
%%-----
                                        -%%
%% Plot the results
                                        %%
%%----
                                   -----%%
r=length(Tb);
time24=0:dt/3600:(r-1)*dt/3600;
subplot(2,1,1)
plot(time24,Tb,'b-',time24,Ta,'r-.',0:1:tend/3600,Tmax,'r.',0:1:tend/3600,8,'b.'), grid on, ylabel('snow smelter Temperature')
legend('Tb','Ta','Limit temperatures')
if NoSolar==0
  axis([0 tend/3600 0 (Tmax+40)])
end
subplot(2,1,2)
plot(time24,HE*HESIZE/1000,'b-',time24(1:end-1),sunshine/1000*A,'r--'), xlabel('Time in hours from midnight'), ylabel('Load Profiles [kW]'),
grid on,
axis([0 tend/3600 0 140]), legend('Generator load', 'Harnessed solar energy')
disp('The energy expended by the heating elements is:')
disp([num2str(sum(HE*HESIZE/1000*dt/3600)),' kWh'])
disp(' ')
disp('The energy passed on to the snowsmelter by the solar collectors is:')
disp([num2str(sum(contribution)/3600000), 'kWh'])
disp('The energy collected by the solar collectors is:')
disp([num2str(sum(collected)/3600000), 'kWh'])
disp(' ')
disp(' ')
```

D.7 Snow Smelter Simulation Programme Results for Thermomax and Mt-Collectors

	I	ESTIM	ATED	DAIL	Y GEN	ERAT	OR LC	OAD F	ROM S	SNOW	SMEL	TER	(kWh/	(day)				
Collector Size		NO	NE (0 1	PANEI	LS)		MEDIUM (24 PANELS)						LARGE (72 PANELS)					
Tresponse (min)	30	10	30	10	30	10	30	10	30	10	30	10	30	10	30	10	30	10
Tmax (°C)	30	30	20	20	10	10	30	30	20	20	10	10	30	30	20	20	10	10
January	1715	1578	1485	1313	1318	1069	1618	1440	1369	1140	1168	856	1301	1140	1046	746	885	498
February	1715	1578	1485	1313	1318	1069	1644	1460	1404	1187	1222	907	1464	1310	1192	924	925	630
March	1315	1157	1115	865	663	569	1144	1067	761	688	370	379	887	888	515	491	173	130
April	1315	1157	1115	865	663	569	1211	1092	820	730	485	397	988	963	577	573	241	204
May	1315	1157	1115	865	663	569	1315	1157	1115	865	663	569	1315	1157	1115	865	663	569
June	1315	1157	1115	865	663	569	1315	1157	1115	865	663	569	1315	1157	1115	865	663	569
July	1315	1157	1115	865	663	569	1315	1157	1115	865	663	569	1315	1157	1115	865	663	569
August	1315	1157	1115	865	663	569	1315	1157	1115	865	663	569	1315	1157	1115	865	663	569
September	1315	1157	1115	865	663	569	1211	1092	820	730	485	397	988	963	577	573	241	204
October	1315	1157	1115	865	663	569	1144	1067	761	688	370	379	887	888	515	491	173	130
November	1315	1157	1115	865	663	569	966	935	595	571	295	262	624	617	301	255	28	15
December	1315	1157	1115	865	663	569	919	897	550	528	278	218	488	460	175	145	26	14

Table D.2: Estimated daily load for snow smelter with and without Thermomax collector system

				DAILY	SAVIN	IGS (kV	Vh)							
Collector Size		MEI	DIUM (2	<mark>4 PANI</mark>	ELS)		LARGE (72 PANELS)							
Tresponse (min)	30	10	30	10	30	10	30	10	30	10	30	10		
Tmax (°C)	30	30	20	20	10	10	30	30	20	20	10	10		
January	97	138	116	173	150	213	414	438	439	567	433	571		
February	71	118	81	126	96	162	251	268	293	389	393	439		
March	171	90	354	177	293	190	428	269	600	374	490	439		
April	104	65	295	135	178	172	327	194	538	292	422	365		
May	0	0	0	0	0	0	0	0	0	0	0	0		
June	0	0	0	0	0	0	0	0	0	0	0	0		
July	0	0	0	0	0	0	0	0	0	0	0	0		
August	0	0	0	0	0	0	0	0	0	0	0	0		
September	104	65	295	135	178	172	327	194	538	292	422	365		
October	171	90	354	177	293	190	428	269	600	374	490	439		
November	349	222	520	294	368	307	691	540	814	610	635	554		
December	396	260	565	337	385	351	827	697	940	720	637	555		
Average	122	87	215	130	162	146	308	239	397	302	327	311		

Table D.3: Energy savings generated at snow smelter from Thermomax collector system

Table D.4: Estimated daily load for snow smelter with and without Mt collector system

ESTIMATED DAILY GENERATOR LOAD FROM SNOW SMELTER (kWh/day)																		
Collector Size		NO	NE (0 1	PANEI	LS)		MEDIUM (24 PANELS)						LARGE (72 PANELS)					
Tresponse (min)	30	10	30	10	30	10	30	10	30	10	30	10	30	10	30	10	30	10
Tmax (°C)	30	30	20	20	10	10	30	30	20	20	10	10	30	30	20	20	10	10
January	1715	1578	1485	1313	1318	1069	1655	1504	1417	1208	1239	950	1542	1380	1294	1036	1048	689
February	1715	1578	1485	1313	1318	1069	1680	1529	1447	1250	1274	989	1601	1401	1350	1086	1170	809
March	1315	1157	1115	865	663	569	1303	1140	939	781	510	458	1195	1097	853	714	384	267
April	1315	1157	1115	865	663	569	1315	1146	1017	821	445	511	1280	1106	856	749	450	435
May	1315	1157	1115	865	663	569	1315	1157	1115	865	663	569	1315	1157	1115	865	663	569
June	1315	1157	1115	865	663	569	1315	1157	1115	865	663	569	1315	1157	1115	865	663	569
July	1315	1157	1115	865	663	569	1315	1157	1115	865	663	569	1315	1157	1115	865	663	569
August	1315	1157	1115	865	663	569	1315	1157	1115	865	663	569	1315	1157	1115	865	663	569
September	1315	1157	1115	865	663	569	1315	1146	1017	821	445	511	1280	1106	856	749	450	435
October	1315	1157	1115	865	663	569	1303	1140	939	781	510	458	1195	1097	853	714	384	267
November	1315	1157	1115	865	663	569	1167	1075	796	713	467	377	943	945	515	509	178	128
December	1315	1157	1115	865	663	569	1045	1026	688	639	356	309	849	823	460	435	134	- 79

				DAILY	SAVIN	IGS (kV	Vh)						
Collector Size		MEI	DIUM (2	<mark>4 PANI</mark>	ELS)		LARGE (72 PANELS)						
Tresponse (min)	30	10	30	10	30	10	30	10	30	10	30	10	
Tmax (°C)	30	30	20	20	10	10	30	30	20	20	10	10	
January	60	74	68	105	79	119	173	198	191	277	270	380	
February	35	49	38	63	44	80	114	177	135	227	148	260	
March	12	17	176	84	153	111	120	60	262	151	279	302	
April	0	11	98	44	218	58	35	51	259	116	213	134	
May	0	0	0	0	0	0	0	0	0	0	0	0	
June	0	0	0	0	0	0	0	0	0	0	0	0	
July	0	0	0	0	0	0	0	0	0	0	0	0	
August	0	0	0	0	0	0	0	0	0	0	0	0	
September	0	11	98	44	218	58	35	51	259	116	213	134	
October	12	17	176	84	153	111	120	60	262	151	279	302	
November	148	82	319	152	196	192	372	212	600	356	485	441	
December	270	131	427	226	307	260	466	334	655	430	529	490	
Average	60	74	68	105	79	119	173	198	191	277	270	380	

Table D.5: Energy savings generated at snow smelter from Mt collector system

Table D.6: System performance comparison

CRITERIA	Bt-COLLECTOR	THERMOMAX	Mt-COLLECTOR
NPV (R)	2 148 811	3 427 161	871 405
IRR (%)	24.47	26.51	15.36
NAW (R)	190 873	304 425	77 404
Breakeven period $^{\infty}$	6	5	11
œ			

 $^{\infty}$ MARR, 8 % & Fuel escalation rate 5 %

Appendix E: Additional Information to Economic Analysis

E.1 Sample Results for Solar PV System

NET PRESENT VALUE

The NPV of cash flows has been calculated with the help of equations 5.1 and 5.2. For example, the NPV of cash flows for the diesel-only system after the first year equals the total costs at the end of year 1 brought back by the PWF with an interest rate equal to the hurdle rate.

$$NPV = \sum_{n=0}^{N} (C_n + M_n + L_n + F_n) \cdot \left(\frac{1}{(1+i)^n}\right)$$
 E.1

$$NPV = -5079770.85 \cdot \left(\frac{1}{\left(1 + 0.08\right)^1}\right)$$

INTERNAL RATE OF RETURN

The IRR can easily be calculated with the help of Microsoft Excel's formulae function, however, by way of example the formula and sample calculation is given here. The IRR is that interest rate which solves the equation given in E.2. Thus for example the IRR in table E.2 at the end of year six is calculated from the column "Yearly Cashflows" in the same table as:

$$\sum_{k=0}^{N} (PWF(IRR,k)) \cdot Income_{k} = \sum_{k=0}^{N} (PWF(IRR,k)) \cdot Expenses_{k} \qquad E.2$$

Which is solved by:

$$1653167.13 \left[\frac{1}{(1+0.1983)^{0}} \right] = 92585.66 \left[\frac{1}{(1+0.1983)^{1}} \right] + 100236.95 \left[\frac{1}{(1+0.1983)^{2}} \right] + 108301.02 \left[\frac{1}{(1+0.1983)^{3}} \right] + \dots$$
$$\dots 116798.22 \left[\frac{1}{(1+0.1983)^{4}} \right] + 125752.34 \left[\frac{1}{(1+0.1983)^{5}} \right] + 135184.67 \left[\frac{1}{(1+0.1983)^{6}} \right]$$

BENEFIT COST RATIO (BC RATIO)

The BC Ratio is easily calculated as the sum of the total benefits projected to the same point in time (in this instance the NPV) divided by the sum of the total costs. Therefore (excluding externalities):

$$BC = \frac{\sum_{k=0}^{N} (PWF(MARR,k)) \cdot Income_{k}}{\sum_{k=0}^{N} (PWF(MARR,k)) \cdot Expenses_{k}} E.3$$

Which can be calculated from the first 4 columns in table E.1 (viz. Capital, Fuel, Maintenance and Labour) and where "Fuel" is the only column that represents an income as given in equation E.3. Thus the BC-Ratio at the end of year 1 is calculated as:

$$BC = \frac{\left[\frac{1}{(1+0.08)^{1}}\right] \cdot 168135.79}{\left[\frac{1}{(1+0.08)^{0}}\right] \cdot 1653167.13 + \left[\frac{1}{(1+0.08)^{1}}\right] \cdot 74540.13 + \left[\frac{1}{(1+0.08)^{1}}\right] \cdot 1010}$$

COST OF ENERGY PRODUCED

The cost of energy generation has been calculated by; summing the respective total costs of the system in question (i.e. diesel-only or hybrid) over the 25-year project lifetime, and then dividing by the power generated after that amount of time.

$$Cost = \frac{\sum_{k=0}^{N} (PWF(MARR, k)) \cdot Expenses_{k}}{\sum_{k=0}^{N} AnnualEnergy \Pr oduction_{k}}$$
E.4

Thus, the normal generation costs of the diesel-only system are calculated as (cost values can be seen at the bottom of table E.1):

$$Cost = \frac{0 + 84903277.43 + 351801.17 + 234534.11}{24 \cdot 1061971}$$

	Α	В	А	В	Α	В	Α	В	А	В
	CAPITAL	INVESTMENT	FUEL C	OSTS	MAINTEN	ANCE	LABOU	JR	тот	AL
0	0.00	-1 653 167.13	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-1 653 167.13
1	0.00	0.00	-5 029 270.85	-4 861 135.06	-30 300.00	-104 840.13	-20 200.00	-21 210.00	-5 079 770.85	-4 987 185.18
2	0.00	0.00	-5 280 734.39	-5 104 191.81	-30 603.00	-105 888.53	-20 402.00	-21 422.10	-5 331 739.39	-5 231 502.44
3	0.00	0.00	-5 544 771.11	-5 359 401.40	-30 909.03	-106 947.41	-20 606.02	-21 636.32	-5 596 286.16	-5 487 985.14
4	0.00	0.00	-5 822 009.67	-5 627 371.47	-31 218.12	-108 016.89	-20 812.08	-21 852.68	-5 874 039.87	-5 757 241.04
5	0.00	0.00	-6 113 110.15	-5 908 740.05	-31 530.30	-109 097.05	-21 020.20	-22 071.21	-6 165 660.65	-6 039 908.31
6	0.00	0.00	-6 418 765.66	-6 204 177.05	-31 845.60	-110 188.03	-21 230.40	-22 291.92	-6 471 841.66	-6 336 657.00
7	0.00	0.00	-6 739 703.94	-6 514 385.90	-32 164.06	-111 289.91	-21 442.71	-22 514.84	-6 793 310.71	-6 648 190.65
8	0.00	0.00	-7 076 689.14	-6 840 105.20	-32 485.70	-112 402.80	-21 657.13	-22 739.99	-7 130 831.97	-6 975 247.99
9	0.00	0.00	-7 430 523.59	-7 182 110.46	-32 810.56	-113 526.83	-21 873.71	-22 967.39	-7 485 207.86	-7 318 604.68
10	0.00	0.00	-7 802 049.77	-7 541 215.98	-33 138.66	-114 662.10	-22 092.44	-23 197.06	-7 857 280.88	-7 679 075.14
11	0.00	0.00	-8 192 152.26	-7 918 276.78	-33 470.05	-115 808.72	-22 313.37	-23 429.04	-8 247 935.68	-8 057 514.54
12	0.00	0.00	-8 601 759.87	-8 314 190.62	-33 804.75	-116 966.81	-22 536.50	-23 663.33	-8 658 101.13	-8 454 820.75
13	0.00	0.00	-9 031 847.87	-8 729 900.15	-34 142.80	-118 136.48	-22 761.87	-23 899.96	-9 088 752.53	-8 871 936.58
14	0.00	0.00	-9 483 440.26	-9 166 395.16	-34 484.23	-119 317.84	-22 989.48	-24 138.96	-9 540 913.97	-9 309 851.96
15	0.00	0.00	-9 957 612.27	-9 624 714.91	-34 829.07	-120 511.02	-23 219.38	-24 380.35	-10 015 660.72	-9 769 606.28
16	0.00	0.00	-10 455 492.89	-10 105 950.66	-35 177.36	-121 716.13	-23 451.57	-24 624.15	-10 514 121.82	-10 252 290.94
17	0.00	0.00	-10 978 267.53	-10 611 248.19	-35 529.13	-122 933.29	-23 686.09	-24 870.39	-11 037 482.75	-10 759 051.88
18	0.00	0.00	-11 527 180.91	-11 141 810.60	-35 884.42	-124 162.62	-23 922.95	-25 119.10	-11 586 988.28	-11 291 092.32
19	0.00	0.00	-12 103 539.95	-11 698 901.13	-36 243.27	-125 404.25	-24 162.18	-25 370.29	-12 163 945.40	-11 849 675.67
20	0.00	0.00	-12 708 716.95	-12 283 846.19	-36 605.70	-126 658.29	-24 403.80	-25 623.99	-12 769 726.45	-12 436 128.47
21	0.00	0.00	-13 344 152.80	-12 898 038.50	-36 971.76	-127 924.88	-24 647.84	-25 880.23	-13 405 772.40	-13 051 843.60
22	0.00	0.00	-14 011 360.44	-13 542 940.42	-37 341.48	-129 204.13	-24 894.32	-26 139.03	-14 073 596.23	-13 698 283.58
23	0.00	0.00	-14 711 928.46	-14 220 087.44	-37 714.89	-130 496.17	-25 143.26	-26 400.42	-14 774 786.61	-14 376 984.03
24	0.00	0.00	-15 447 524.88	-14 931 091.82	-38 092.04	-131 801.13	-25 394.69	-26 664.43	-15 511 011.62	-15 089 557.37
25	0.00	0.00	-16 219 901.13	-15 677 646.41	-38 472.96	-133 119.14	-25 648.64	-26 931.07	-16 284 022.73	-15 837 696.62
PV	R 0.00	R -1 653 167.13	R -84 748 502.27	R -81 915 237.43	R -351 801.17	R -1 217 256.71	R -234 534.11	R -246 260.82	R -85 334 837.55	R -85 031 922.09

Table E.1: Sample results for the solar PV system (column A is for diesel-only and column B is for the hybrid system)

					USING A SIN	GLE CAPITAL INV	ESTMENT			
A		YEARLY CASHFLOWS	DISCOUNTED PAYBACK	SIMPLE PAYBACK	EXTERNALITIES	NPV OF EXTERNALITIES	DSCNTED PAYBACK (WITH EXTERNALITES)	SIMPLE PAYBACK WITH EXTERNALITIES	IRR BASED ON YEARS	BC RATIO BASED ON YEARS
0.00	-1 653 167.13	-1 653 167.13	-1 653 167.13	-1 653 167.13	0.00	0.00	-1 653 167.13	-1 653 167.13	#NUM!	0.00
-4 703 491.53	-6 270 931.19	92 585.66	-1 567 439.66	-1 560 581.47	53 554.11	49 587.14	-1 517 852.52	-1 510 994.33	#NUM!	0.09
-9 274 598.69	-10 756 101.32	100 236.95	-1 481 502.63	-1 460 344.51	54 089.65	95 960.30	-1 385 542.33	-1 364 384.21	#NUM!	0.17
-13 717 111.07	-15 112 640.86	108 301.02	-1 395 529.79	-1 352 043.49	54 630.55	139 327.79	-1 256 202.00	-1 212 715.70	#NUM!	0.25
-18 034 705.73	-19 344 384.89	116 798.82	-1 309 679.17	-1 235 244.67	55 176.86	179 884.43	-1 129 794.74	-1 055 360.24	#NUM!	0.31
-22 230 950.76	-23 455 045.00	125 752.34	-1 224 094.24	-1 109 492.33	55 728.62	217 812.39	-1 006 281.85	-891 679.94	#NUM!	0.38
-26 309 308.81	-27 448 213.78	135 184.67	-1 138 904.97	-974 307.66	56 285.91	253 282.06	-885 622.90	-721 025.60	-19.83%	0.43
-30 273 140.36	-31 327 369.17	145 120.06	-1 054 228.81	-829 187.60	56 848.77	286 452.77	-767 776.03	-542 734.83	-14.08%	0.49
-34 125 706.99	-35 095 878.62	155 583.98	-970 171.62	-673 603.63	57 417.26	317 473.53	-652 698.09	-356 130.09	-9.68%	0.54
-37 870 174.49	-38 757 003.05	166 603.18	-886 828.56	-507 000.45	57 991.43	346 483.68	-540 344.87	-160 516.77	-6.23%	0.59
-41 509 615.83	-42 313 900.65	178 205.73	-804 284.82	-328 794.71	58 571.34	373 613.55	-430 671.27	44 818.83	-3.50%	0.63
-45 047 014.07	-45 769 630.53	190 421.14	-722 616.46	-138 373.57	59 157.06	398 985.00	-323 631.46	260 611.42	-1.28%	0.67
-48 485 265.15	-49 127 156.17	203 280.37	-641 891.02	64 906.80	59 748.63	422 712.00	-219 179.03	487 618.80	0.53%	0.71
-51 827 180.59	-52 389 348.84	216 815.95	-562 168.25	281 722.75	60 346.11	444 901.14	-117 267.11	726 623.89	2.03%	0.75
-55 075 490.10	-55 558 990.74	231 062.02	-483 500.64	512 784.77	60 949.57	465 652.09	-17 848.54	978 436.86	3.28%	0.79
-58 232 844.06	-58 638 778.08	246 054.44	-405 934.01	758 839.21	61 559.07	485 058.08	79 124.07	1 243 897.29	4.34%	0.83
-61 301 816.00	-61 631 324.07	261 830.88	-329 508.08	1 020 670.09	62 174.66	503 206.27	173 698.19	1 523 876.36	5.25%	0.86
-64 284 904.89	-64 539 161.74	278 430.88	-254 256.86	1 299 100.96	62 796.41	520 178.19	265 921.34	1 819 279.15	6.02%	0.89
-67 184 537.45	-67 364 746.63	295 895.96	-180 209.18	1 594 996.92	63 424.37	536 050.08	355 840.90	2 131 047.00	6.69%	0.93
-70 003 070.35	-70 110 459.44	314 269.73	-107 389.09	1 909 266.65	64 058.62	550 893.23	443 504.14	2 460 159.89	7.26%	0.96
-72 742 792.27	-72 778 608.51	333 597.98	-35 816.24	2 242 864.63	64 699.20	564 774.33	528 958.09	2 807 638.97	7.77%	0.99
-75 405 926.01	-75 371 432.26	353 928.79	34 493.75	2 596 793.43	65 346.19	577 755.73	612 249.47	3 174 549.15	8.21%	1.01
-77 994 630.43	-77 891 101.49	375 312.65	103 528.95	2 972 106.08	65 999.66	589 895.74	693 424.68	3 562 001.82	8.60%	1.04
-80 511 002.42	-80 339 721.61	397 802.58	171 280.81	3 369 908.66	66 659.65	601 248.90	772 529.70	3 971 157.55	8.94%	1.07
-82 957 078.67	-82 719 334.81	421 454.25	237 743.86	3 791 362.90	67 326.25	611 866.20	849 610.06	4 403 229.10	9.25%	1.09
-85 334 837.55	-85 031 922.09	446 326.11	302 915.46	4 237 689.01	67 999.51	621 795.35	924 710.81	4 859 484.36	9.52%	1.12
R -85 334 837.55	R -85 031 922.09	R 302 915.46	R 302 915.46	R 4 237 689.01	R 621 795.35	R 621 795.35	R 924 710.81	R 4 859 484.36		

Table E.2: Sample results for solar PV system (column A is for diesel-only and column B is for the hybrid system)